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On the Foundations of Interval Arithmetic

Svetoslav M. Markov

0 Introduction

We consider a special class of abelian semigroups (S, +), such that for every ordered
couple (A,B), A,B ∈ S, either A + X = B or B + Y = A is uniquely solvable. We
assume that there is an operator ”negation” (”reciprocal” in the multiplicative case)
in (S, +) having certain properties abstracted from the interval arithmetic operator
”−” (resp. ”/”) in I(IR). The operator negation generates the operations subtraction,
inner addition and inner subtraction. We show that negation plays a special role in the
embedding of the semigroup S in the set D = S⊗{+,−} of elements of the form (A;±),
A ∈ S. We establish an isomorphism between D and the group G = S2/E with E :
(A, B) ∼ (U, V ) ⇐⇒ A + V = B + U . In G the inverse element is opp(A, B) = (B, A)
and in D we have the natural operator dual(A; α) = (A;−α), α = ±. We show that
opp and dual are related in G by dual(A,B) = −opp(A, B) = −(B, A) = (−B,−A),
resp. in D by opp(A; α) = −dual(A;α) = −(A;−α) = (−A;−α). This allows a
transition of results between G and D and a ”projection” of results from D on S.
Analogies of the results in the groups G and D can be found in S, which leads to an
enrichment of S with operators, operations and corresponding relations. For instance,
an associative-like relation is obtained in S by translating the associative law in the
group D. The results obtained are illustrated on interval arithmetic systems.

1 Semigroups with Negation

Let (S,+) be a commutative (abelian) semigroup, which satisfies the following prop-
erty, further refered as t-property: For every pair (A,B), A, B ∈ S, at least one of the
equations A + X = B, B + Y = A has a solution, which is thereby unique. It is easily
seen that if (S, +), satisfies the t-property, then it obeys a cancellation law.

Proposition 1.1. The t-property is equivalent to the following trichotomy condition
(T): For (A, B), A,B ∈ S, exactly one of the following three cases holds true:

T1) Equation A + X = B has a unique solution, whereas B + Y = A has no solution;

T2) Equation B +Y = A has a unique solution, equation A+X = B has no solution;



T3) Both equations A + X = B and B + Y = A have unique solutions.

If (A,B) satisfies T1), then (B,A) satisfies T2) and vice versa. The elements X, Y
in case T3) are called degenerate, i. e. X ∈ S is degenerate if there exist A,B ∈ S,
satisfying T3). The set of all degenerate elements of S is denoted by S0.

Proposition 1.2. Every semigroup (S,+), satisfying a t-property, possesses a null
element, i. e. A + X = A has a unique solution X = 0 not depending on A ∈ S.

The null element is degenerate, 0 ∈ S0; A + A = A is equivalent to A = 0 and
A+0 = B is equivalent to A = B. Since 0+0 = 0, ({0}, +) is a (trivial) group, which
is a subgroup of (S, +). S0 is a group, which is a subgroup of S. The inverse element
to A ∈ S0 is denoted, by −A, so that A + (−A) = 0. A semigroup S containing only
the trivial subgroup S0 = {0} is called simple. A semigroup (S, +) is called proper if
(S, +) is not a group in its own right. A semigroup (S, +) is called nonsimple if there
exists at least one element P ∈ S, P 6= 0, such that P + X = 0 has a unique solution.
A proper, nonsimple semigroup (S, +), satisfying a t-property, will be briefly called a
pnt-semigroup. For a pnt-semigroup (S,+) with a subgroup S0 we denote S+ = S \S0.
By definition, S+ 6= ∅.
Definition 1.1. The trichotomy (T) generates an order relation ≤ω in S:

T1) A <ω B means that B can be presented as a sum of A and an element X ∈ S+,
symbolically, B = A + X, X ∈ S+, whereas A cannot be presented as B + Y , Y ∈ S+;
the unique X, satisfying A + X = B is denoted by X = B −̇A ∈ S+.

T2) A >ω B means that A can be presented as a sum of B and an element Y ∈ S+,
symbolically, A = B + Y , Y ∈ S+, whereas B = A + X, X ∈ S+ is not true; the
unique solution Y of B + Y = A is denoted by Y = A −̇B ∈ S+.

T3) A =ω B means that both: i) B can be presented as a sum of A and an element
X ∈ S0, that is A + X = B, and ii) A can be presented as a sum of B and some
element Y ∈ S0, that is B + Y = A; we have Y = −X.

The relation A =ω B is equivalent to A = B + P , P ∈ S0, and is an equivalence
relation in S. We have A ∈ S0 ⇐⇒ A =ω 0. The relation ”=ω” generates equivalence
classes, which are cosets of S of the form A + S0 = {A + P | P ∈ S0}, A ∈ S; A =ω B
means that A and B belong to same cosets: A =ω B ⇐⇒ A ∈ S0 +B ⇐⇒ B ∈ S0 +A.
In a pnt-semigroup (S, +) with a subgroup S0 we define negation as follows:

Definition 1.2. Let S be a pnt-semigroup. An operator N : S −→ S with the prop-
erties: i) N(A) = 0 ⇐⇒ A = 0, A ∈ S; ii) N(N(A)) = A, A ∈ S; iii) N(P ) = −P ,
P ∈ S0; iv) N(A + B) = N(A) + N(B), A, B ∈ S, is called negation (in S).

Proposition 1.3. Let (S, +) be a pnt-semigroup and N : S −→ S be negation. Then
i) N is an automorphism and N−1 = N ; ii) N(A) =ω A for A ∈ S; iii) For A ∈ S,
N(A + S0) = A + S0, that is the image of a coset under N is the same coset. In
particular, N maps S0, S+, and S resp. into S0, S+ and S.



Proposition 1.4. Let N be a negation in the pnt-semigroup (S, +) and let for every
A ∈ S there is a Q ∈ S0, such that N(A + Q) = A + Q. Then N is unique in S.

Proof. We first show that if for A ∈ S there is a Q = Q(A) ∈ S0, with N(A + Q) =
A + Q, then Q is unique (for this A). Assume that for Q∗ ∈ S0, Q

∗ 6= Q, we have
N(A + Q∗) = A + Q∗. Then from N(A) = A + Q + Q and N(A) = A + Q∗ + Q∗

follows that Q + Q = Q∗ + Q∗ that is Q = Q∗. We next show that the element
A + Q = A + Q(A) is fixed for all A belonging to one and the same coset. Indeed let
B = A+P for P ∈ S0 and Q1 = Q(B). Replacing B = A+P in N(B +Q1) = B +Q1

we obtain N(A + P + Q1) = A + P + Q1, which, compared to N(A + Q) = A + Q,
gives P + Q1 = Q. Hence, A + Q = A + P + Q1 = B + Q1. ¤

The class of all pnt-semigroups possessing a unique operator negation will be further
denoted by I. The unique negation in S ∈ I will be denoted by N(A) = −A, and
we shall write S = (S, S0, +,−) ∈ I. Since S ∈ I is not a group and therefore
has no inverse elements (besides the elements of the subgroup S0, for which inverse
and negation coincide) this notation causes no confusion and is consistent with the
familiar notation ”−” in interval arithmetic. We introduce in S the operation A−B =
A + (−B), A, B ∈ S. The operations A + B, A−B are sometimes called outer. The
inner addition is defined by

A +− B =
{

A −̇ (−B), A ≥ω B,
B −̇ (−A), A ≤ω B.

(1)

For A =ω B the expressions in the right-hand side of (1) coincide. The addition +−

is commutative; the additions +, +− are (conditionally) associative in the sense of
Proposition 2.2 below. The inner subtraction is defined by A −− B = A +− (−B) =
{A −̇B, if A ≥ω B; −( −̇A), if A ≤ω B}; it satisfies A−− A = 0.

2 Algebraic Completion of the Semigroup

It is well known that every abelian semigroup (S, +) can be isomorphically embedded
in an abelian group (G,+) using the following scheme. Denote by (G,+) the abelian
group generated by (S, +) such that G = S2/E, where S2 = {〈A,B〉 | A,B ∈ S},
and E : 〈A,B〉 ∼ 〈P, Q〉, iff A + Q = B + P . The elements of G are the equivalence
classes of S2 w. r. t. E, and are denoted by (A,B), A,B ∈ S. Obviously, (A,B) =
(A+X, B+X) for any X ∈ S. In particular, (A, 0) = (A+X,X), (0, B) = (X,B+X)
and (0, 0) = (X, X) for any X ∈ S. The group operation + in G is defined by
(A, B) + (P, Q) = (A + P,B + Q), A,B, P, Q ∈ S. The null element in (G, +) is
(A, A) = (0, 0) and the inverse of (A,B) is (B, A). We denote the inverse elements
in (G, +) by opp(A,B) = (B, A) (and not by ”−” in order to avoid confusion with
negation). The trichotomy (T) subdivides G into the subsets G+, G−, G0, of resp.



proper, improper and degenerate elements:

G+ = {(A, B) | A >ω B} = {(B + X, B) | X ∈ S+} = {(X, 0) | X ∈ S+},
G− = {(A, B) | A <ω B} = {(A,A + Y ) | Y ∈ S+} = {(0, Y ) | Y ∈ S+},
G0 = {(A, B) | A =ω B} = {(X, 0) | X ∈ S0} = {(0, Y ) | Y ∈ S0},

where S+ = S \ S0, X = A −̇ B, Y = B −̇ A. We have G = G+

⋃G0

⋃G− and G0 is
a subgroup of G. The semigroup (S,+) is isomorphically embedded in (G, +) under
ϕ : S −→ G+,0, where G+,0 = G+

⋃G0 = {(X, 0) | X ∈ S} with ϕ(A) = (A, 0), A ∈ S.
For P ∈ S0 we have ϕ(P ) = (P, 0) = (0,−P ), since P +(−P ) = 0 (S0 is a group). The
image of S under ϕ is ϕ(S) = G+,0; we also have ϕ(S+) = G+ and ϕ(S0) = G0. We
may use an unique representation of the elements of the group (G, +), generated by
(S, +) ∈ I, by writing the elements of G+,0 = G0

⋃G+ in the form (A, 0) with A ∈ S,
and the elements of G− in the form (0, B) with B ∈ S+, that is

G0 = {(P, 0) | P ∈ S0}, G+ = {(A, 0) | A ∈ S+}, G− = {(0, B) | B ∈ S+}. (2)

The group G0 subdivides G into disjoint cosets of the form (A,B)+G0. For A ∈ S+ the
sets (A, 0)+G0 = {(A+P, 0) | P ∈ S0} ⊂ G+, (0, A)+G0 = {(0, A+Q) | Q ∈ S0} ⊂ G−
are cosets involving proper, resp. improper elements. To add two elements of G, one of
which belongs to G− and the other to G+, we may use the following expression which
gives the sum in the unique form (2):

(A, 0) + (0, B) = (A, B) =
{

(A −̇B, 0), A ≥ω B,
(0, B −̇A), A ≤ω B.

(3)

Embedding using directed elements. Let (S, S0, +,−) ∈ I. An ordered couple of
the form (A; α), A ∈ S, α ∈ {+,−}, is called a directed element generated by S. We
define the following sets of directed elements generated by S:

D+ = {(A; +) | A ∈ S+}, D− = {(A;−) | A ∈ S+}, D0 = {(A; +) | A ∈ S0};
D+,0 = {(A; +) | A ∈ S} = D+

⋃
D0, D = D+,0

⋃
D− = D+

⋃
D−

⋃
D0.

In the above definition of D we do not use elements of the form (A;−), with A ∈ S0.
For convenience we set (A;−) = (A; +) for A ∈ S0; then D = S ⊗ Λ, Λ = {+,−}.
In Λ we introduce a ”multiplication”: ++ = −− = +, +− = −+ = −. For A ∈ S+,
the element (A; +) ∈ D+ is called proper element of D, (A;−) ∈ D− is improper
element of D, the elements (A; +) = (A;−) with A ∈ S0 are called degenerate. The
first component A of the element (A; α) ∈ D is called the proper projection of (A; α)
further denoted pro(A; α) and the second component α is the direction of (A; α).
Symbolically, pro: D −→ S, with pro(A; α) = A, A ∈ S, α ∈ Λ, and τ : D −→ Λ,
with τ(A;α) = α, A ∈ S+, α ∈ Λ; τ(A; α) = +, A ∈ S0. The components A, α can
be viewed as ”projections” of (A;α) ∈ D = S ⊗ Λ on the ”coordinate axes” S, Λ. In
D we define the automorphism dual : D −→ D by dual (A; α) = (A;−α).



Proposition 2.1. Every semigroup (S, S0, +,−) ∈ I can be isomorphically embedded
in a group (D,+), where D = S ⊗ Λ is the set of directed elements generated by S,
and (D, +) ∼= (G,+).

Sketch of the proof. We first define a bijection ψ : G+,0 −→ D+,0 by

ψ(A, 0) = (A; +) ∈ D+,0, A ∈ S. (4)

We define ”+” in D+,0 by (A; +) + (B; +) = (A + B; +), then ψ is an isomorphism
between the semigroups (D+,0,+) and (G+,0, +) and (S, +) ∼= (D+,0, +) ∼= (G+,0, +).
We then show that the isomorphism ψ can be uniquely extended over D by

ψ(0, B) = (−B;−) ∈ D−, B ∈ S+, (5)

generating thus a group operation ”+” in D; see (7) below. Note that (5) is valid for
B ∈ S0 as well (and coincides with (4) for A = −B ∈ S0). ¤
The isomorphic embedding µ : S −→ D of the semigroup S in the group D can be
defined as the mapping µ = ϕψ, where ϕ is the embedding ϕ(A) = (A, 0) of S in
G, and ψ is the bijection between G and D defined by (4) and (5). For the algebraic
completion of the semigroup S up to a directed group (D, +) we substantially make
use of the negation operator in S; see (5). The formula opp(B;α) = (−B;−α) shows
that we cannot express the opposite elements in D without negation.

The embedding ϕ extends the operator negation from S to G by neg(A,B) = (−A,−B),
A,B ∈ S, and the isomorphism ψ defines negation in D by neg(A; α) = (−A; α),
A ∈ S. We defined in D the operator dual(A; α) = (A;−α); the operator dual in G
generated by the isomorphism between G and D is dual(A,B) = (−B,−A).

We shall use boldface letters for a brief notation of the elements of the groups D and
G, generated by S ∈ I. Using such notation we can write

neg (A) = opp (dual A) = dual (opp A), A ∈ D (A ∈ G). (6)

We see that besides opp we have two more automorphisms in the group G, resp. D:
dual and neg. The operation ”+” in D generated by the isomorphism ψ is given by:

(A; α) + (B; β) = (A +αβ B; τ((A;α) + (B; β))), A, B ∈ S, α, β ∈ Λ, (7)

wherein ++ = + is the outer addition, +− is the inner addition (1), and τ((A;α) +
(B;β)) = {α, if α = β or α = −β, A >ω B; β, if α = −β, A <ω B; +, if α =
−β, A =ω B}. We can obtain explicit expressions similar to (7) for various composite
operations in D, involving addition, negation, opposite and dual, such as (A;α) +
neg(B;β), (A;α) + dual(B; β), etc. We can thus reformulate any expression from
G in terms of D = S ⊗ Λ, that is in terms of S (and Λ). As an example let us
”project” the associative law in G, resp. D, it into S. Substituting A = (A; α),
B = (B;β), C = (C; γ) in (A + B) + C = A + (B + C), using (7), we obtain
(A +αβ B; τ(A + B)) + (C; γ) = (A;α) + (B +βγ C; τ(B + C)). Comparing the
proper projections of both sides we obtain the following conditionally associative law
in (S, +,−) ∈ I:



Proposition 2.2. For A,B, C ∈ S ∈ I, α, β, γ ∈ {+,−}, we have (A+αβ B)+γµ C =
A +αν (B +βγ C), where µ = τ((A; α) + (B; β)), ν = τ((B; β) + (C; γ)).

3 Interval Semigroups and their Completion

The interval arithmetic systems (involving interval vectors, functions etc.) are special
case of semigroups from I with resp. to addition/multiplication and possess unique
negation/reciprocal operator. We consider briefly the simplest interval semigroup
involving the set of compact intervals over the real line. For a, b ∈ IR with a ≤ b the
set [a, b] = {x | x ∈ IR, a ≤ x ≤ b} is called an interval. Denote the set of all intervals
by I(IR). The sum of [a, b], [c, d] ∈ I(IR) is the interval {u + v | u ∈ [a, b], v ∈ [c, d]} =
{z | a + c ≤ x ≤ b + d}, that is [a, b] + [c, d] = [a + c, b + d]. The set S = I(IR) is
a semigroup under the addition thus defined. The set of reals S0 = IR is isomorphic
to the set of degenerate intervals [a, a] and is thus a subgroup of I(IR). The width of
[a, b] is w([a, b]) = b − a. For [a, b], [c, d] ∈ I(IR), the equation [a, b] + [x, y] = [c, d]
has a unique solution for [x, y] iff w([a, b]) ≤ w([c, d]), or briefly, [a, b] ≤w [c, d]; if
[c, d] ≤w [a, b], then the equation [c, d] + [u, v] = [a, b] is uniquely solvable. The
relation [a, b] =w [c, d] ⇐⇒ w([a, b]) = w([c, d]) generates equivalence classes in I(IR)
which are cosets of the form [a, b] + IR = {[a, b] + t | t ∈ IR}. The operator negation,
defined by −[a, b] = [−b,−a], is the unique operator in I(IR) satisfying the conditions
of Definition 1.2. The operation (outer) subtraction ”−” in I(IR) is [a, b] − [c, d] =
[a, b] + (−[c, d]) = [a− d, b− c]. From (1) we obtain that the operations inner addition
”+−” and inner subtraction ”−−” are expressed resp. by

[a, b] +− [c, d] =
{

[a + d, b + c], [a, b] ≥w [c, d],
[b + c, a + d], [a, b] ≤w [c, d];

[a, b]−− [c, d] =
{

[a− c, b− d], [a, b] ≥w [c, d],
[b− d, a− c], [a, b] ≤w [c, d].

The interval semigroup (I(IR), +) ∈ I can be embedded in the group (G(IR), +), with
G(IR) = I(IR)2 \ E = {([a, b], 0) | a ≤ b}⋃

(0, [a, b]) | a ≤ b}, which is isomorphic
to the set of couples of real numbers II(IR) = {[a, b] | a, b ∈ IR}, called generalized
intervals [1], with [a, b] + [c, d] = [a + c, b + d]. The semigroup (I(IR),+,−) can be
also embedded in the group (D(IR), +), where D(IR) = {[A; α] | A ∈ I(IR), α = ±} is
the set of directed intervals with addition defined by (7). The basic automorphisms
in (II(IR),+) are dual[a, b] = [b, a], −[a, b] = [−b,−a] and opp[a, b] = [−a,−b], a, b ∈
IR. In (D(IR),+) we have dual[A; α] = [A;−α], −[A; α] = [−A; α] and opp[A;α] =
[−A;−α], A ∈ I(IR), α = ±. In a dual manner we embed the multiplicative interval
semigroup (I(IR)∗,×, /) ∈ I, with I(IR)∗ = {[a, b] | a ≤ b < 0 or 0 < a ≤ b},
[a, b] × [c, d] = {uv | u ∈ [a, b], v ∈ [c, d]}, and reciprocal operator ”/” given by
1/[a, b] = [1/b, 1/a], [a, b] ∈ I(IR)∗, into the groups (II(IR)∗,×) [1], resp. (D(IR)∗,×)
[2]. Associative and distributive relations in (II(IR), +,×), resp. (D(IR), +,×) can
be derived and ”projected” in (I(IR), +,−,×, /). For example, the distributive-like



relation (A+B)×Cσ(A+B) = (A×Cσ(A))+ (B×Cσ(B)) in II(IR)∗ can be translated
for normal (proper) intervals via passing through directed intervals; see [2].

4 Conclusion

We study the semigroup S ∈ I, which generates: a group G = S2 \ E of ordered
couples of elements of S and a group D = S ⊗ Λ of directed elements. We find an
isomorphism between the two groups. Our results generalize results related to interval
arithmetic [2], and their application to interval algebraic equations [3], [5], and com-
putation of functional ranges [2], [4]. The operator negation/reciprocal together with
the outer and inner addition/multiplication and subtraction/division involved, can be
used for the solution of algebraic problems formulated in S (where no inverse elements
exist), which corresponds to the solution of algebraic problems in the extended sets
G and D using inverse elements. This relates algebraic problems formulated in S and
corresponding algebraic problems in the extended sets, which can be solved by means
of group operations. To interpret the solutions in the extended spaces we can relate
them to the solutions of the original problems, formulated in S, using the transition
technique described in this work. Without such technique the extended interval space
II(IR), although known for two decades [1], remains useless for applications.
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